
may not only lead to an incorrect growth rate of disturbances within the linearized problems, 
but may also distort the evolution amplitude as a function of time t I in the nonlinear regime. 

Thus, the lack of clarity in presenting the form of the solution, marked by the present 
referees in commenting on the original version of the study reviewed, must be understood not 
simply as a wish for an improved style of presentation, but an intrinsically vague formulation 
of the problem considered. From the revised version of the article it is obvious that the 
referees' comments have so far not been grasped by the author. 

Nevertheless, A. P. Khokhlov's article "The theory of resonance interaction of Tollmien- 
Schlichting waves" deserves publication in Prikladnaya Mekhika Tekhicheskaya Fizika, though 
in a form presented following suitable corrections. As follows from the discussion above, 
however, the problem of whether the results presented in it are asymptotically correct is 
still open. 

EFFECT OF POLYDISPERSION ON SOUND PROPAGATION IN GAS 

MIXTURES WITH VAPOR AND LIQUID DROPS 

D. A. Gubaidullin and A. I. Ivandaev UDC 534.2:532.529 

The propagation of nonstationary low-amplitude disturbances in heterogeneous gas mixtures 
with vapor and liquid drops is one of the current problems of wave dynamics of two-phase systems. 
Such heterogeneous media are basic working units in energy devices, apparatus of chemical 
technology, and other devices of contemporary technology. In these cases, to control the 
flow of various technological processes one often uses calculations and measurements of pro- 
pagation and absorption rates of acoustic waves. Therefore, investigations of the effects 
of various physicochemical transformations on the character of disturbance propagation in 
two-phase gas -drop systems are very valuable. 

Despite the number of published studies, the propagation of acoustic waves in vapor- 
gas-drop systems in the presence of interphase in the presence of mass exchange has so far 
not been investigated in sufficient detail. Most of the studies in acoustics of gas-vapor- 
drop media were devoted to the study of propagation of low-intensity waves in multiply dis- 
perse systems [i-12]. A number of aspects of the effect of polydispersion on propagation of 
acoustic disturbances in gas suspensions in the absence of mass exchange was treated earlier 
in [i, 13]. The problem of sound propagation in polydisperse vapor-gas -drop mixtures has 
practically not been investigated. In the present study we investigate for the first time 
the effect of polydispersion on the propagation of low-intensity waves in vapor-gas-drop 
systems, including effects of nonequilibrium phase transformations. 

i. Consider the one-dimensional motion of a polydisperse vapor-gas-drop mixture in an 
acoustic field, when the disturbances in mixture parameters are small. The basic character- 
istics of this suspension are the following parameters: 

amax amax 

amtn amin 

amax 

amin 

m = p ~ 1 0 ,  k~ =p~/pm,  ] = V, G, kv + k~ = i. 

Here  N(a )  i s  t h e  s i z e  d i s t r i b u t i o n  f u n c t i o n  o f  d r o p s  i n  t h e  s u s p e n s i o n  w i t h  minimum ami n and 
0 

maximum ama x d r o p  r a d i i ,  n ,  a i ,  P i ,  Pi  a r e  t h e  t o t a l  number  o f  p a r t i c l e s  p e r  u n i t  v o l u m e ,  t h e  
b u l k  c o n t e n t ,  and t h e  t r u e  and mean d e n s i t i e s  o f  t h e  g a s  p h a s e  ( i  = 1) and o f  p a r t i c l e s  ( i  = 
2 ) ,  mz and m a r e  t h e  mass  o f  a s i n g l e  d r o p  and  t h e  i n i t i a l  mass  c o n t e n t  o f  d r o p s ,  k j  i s  t h e  
i n i t i a l  c o n c e n t r a t i o n  o f  t h e  v a p o r  ( j  = V) and g a s  ( j  = G) c o m p o n e n t s  o f  t h e  g a s  p h a s e ,  and 
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the superscripts 0 refer to parameters of the initial unperturbed homogeneous state of the 
mixture. 

A system of linear differential equations of motion of the polydisperse vapor-gas-drop 
mixture is obtained by integrating the linearized equations of motion for a monodisperse sus- 
pension [7] over the drop radius a from ami n to amax.% In a coordinate system relative to 
which the unperturbed mixture is at rest the conservation equations of mass and of the mo- 
menta of the host phase and of the disperse drops are 

amax 
OPi OVl r ~ 
0-7 + P~o-~z = - -  , j  N~ 

amin 

~ ,  gmax ~ ,  amax 
092 C ~ ~ 0% [ ~ ~ 

i = I , V , D - [ +  J Norn2o~da----- j Nojxda, 

amin amin ( 1 . 1 )  

amax 
�9 r _ a ~ :  

amin 

amax 
~" [ ~ '  ~ - -  Xi' 
92----- [m.Cr o+moo]~ ]da, 9 1 = 9 v §  Pl=Pv+P6, 

amin 

where v, p are the velocity and pressure, JVE is the diffusion flow of the vapor to the drop 
surface E, JE is the condensation intensity at the surface of an individual drop, f is the 
force on an isolated drop due to the host phase, the sign ~ denotes quantities depending on 
the parameter a, and the prime denotes a parameter perturbation. 

The equations of thermal influx to the gas phase, drops, and surfaces of individual drops 
are written in the form 

amax 

9~oCm - ~  - -  alo ~ ~ -- m2oco " 
~min ( t  . 2 )  

~l  ~- + ~x = -.Tzl~, f v~ = ix, cpl = kvcpv + kocp~. 

Here T is the temperature, cp is the heat capacity at constant pressure, c 2 is the heat 
capacity of the incompressible disperse phase, qjy is the intensity of heat exchange of the 
j-th phase (j = I, 2) with the drop surface, and s is the specific heat of vapor formation. 

The linearized equations of state of a vapor and gas mixture are represented in the form 

,9 t 

, C v [ , , T i 

Pv ~-  ,i'~:a 0 kPv + rkvp.a) + Pro To, 

v ~ # t t T :  
p,  = __C~~ [g2(9,  + rp2) + g~ ( g v +  rkvg,)]  -L< p , o T  ~ (1.3) 

?loalo 
0 0 t - -  r = 91o/9~.o, b = Bv/R~o, gt = (By - -  BG)/Bto, g~ = kvg~ 

(C is the speed of sound, and T is the adiabatic index). 

For given force, thermal, and massive phase interactions one takes into account the de- 
pendencies of the force f, thermal fluxes qj7 (j = I, 2), and mass exchange intensities JVZ 
on the oscillation frequency co [8, 13-15]: 

r ~t t ~: ~s ~v 

~ v I~ v 2 ~. ~ r PV-- PVE "7. r PVX--PVS 

C/IX n.~2 ~ C p l  ' ] ' l  - -  T v  ~ ~ ~ ,  ~ , m ~ .  , q 2 x  = m o . o C ~  T 2  - -  T Z  lnP~176 
= ~ - ~ .  ....... , P v s = ( t _ r k v )  T O Tx.  

"6T1 TT2 

( 1 . 4 )  

Here PVS is the partial pressure of saturated vapor, related to the drop surface temperature 
TE by the Clausius-Clapeyron equation, and ~* is a complex time, characterizing the dynamics 

#An integration procedure for the special case of a single-component mixture of a vapor with 
drops was treated earlier in [13]. 
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and heat and mass exchange of a single drop with the surrounding gas in a high-frequency 
acoustic field [8, 15]: 

[ i--~t ~ 'I/2] -I -* 1 R v _  

- -  ~ a 2 

Tv ~ 0 tt i T~il ~i ' D t  7 

= ( , , , % ) ' <  j = t ,  2,  

py cj 

(B~ i s  t he  dynamic v i s c o s i t y  o f  the  gas ,  ~ i s  t he  h e a t  conduc t ion  c o e f f i c i e n t ,  D~ i s  t he  
b ina ry  d i f f u s i o n  c o e f f i c i e n t ,  and ~ i s  t he  accommodation c o e f f i c i e n t ) .  

The sys tem of  equa t i ons  ( 1 , 1 ) - ( 1 . 5 )  i s  c lo sed ,  and can be used to  i n v e s t i g a t e  the  pro-  
p a g a t i o n  of  a c o u s t i c  d i s t u r b a n c e s  in p o l y d i s p e r s e  mix tu re  of  a gas w i th  vapor and l i q u i d  
drops .  

2. We investigate solutions of the system of linear equations (1.1)-(1.5) having the 
form of progressive waves for the disturbance: 

~1-' =: Ar exp i (K,x -- cot) = ,4, exp (-- Ke,x )  exp [i (Kx -- (or)I, ( 2 . 1 )  

K , -  K-biK**, C v = o ) /K ,  Cg = d(,)/dK, a = 2nK**/K. 

Here A S i s  t he  complex d i s t u r b a n c e  ampl i tude  of  parameter  ~, i i s  the  imaginary  u n i t y ,  K, 
i s  the  complex wave number, K** i s  the  l i n e a r  a t t e n u a t i o n  c o e f f i c i e n t ,  and Cp, Cg, and o a re  
the  phase and group v e l o c i t i e s ,  and the  a t t e n u a t i o n  decrement per wavelength .  S u b s t i t u t i n g  
a s o l u t i o n  of  the  form (2 .1)  i n t o  Eqs. ( 1 . 1 ) - ( 1 . 5 ) ,  we ob ta in  
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Here the linear averaging operator is [13] 

<h> = oha ada  o a3da  -~-- 

\amin } 1  \amin / 

amax 
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According to the definition we have for the gas phase parameter A~l , due to its independence 
of the parameter a, <A~l> - A#l. 

To bring out the independent amplitudes ApVZ, ADVS, ATE, Av2 from under the averaging 
operator < > in Eqs. (2.2), we express them in terms~of the amplitudes of the gas phase para- 
meters A~l, which are independent of a, and the known characteristic times ~*: 

A~2 = (:  --  ~o" -* ) - '  A~,. : : z  = (--*T~ + ~ ) - - '  ( ~ A : -  --  -*~~A~vs), 

[ ] Apvs = (t -- rkv) T o ATZ' ATZ = 

- ~2 (t  - -"  - '  - [~o(~* ~ )1  -~. e~ 

S u b s t i t u t i n g  e x p r e s s i o n s  ( 2 . 3 )  i n t o  sys t em ( 2 . 2 ) ,  we o b t a i n  a homogeneous sys t em o f  l i n e a r  
a l g e b r a i c  e q u a t i o n s  in  t h e  a m p l i t u d e s  A~. 

The d e t e r m i n a n t  o f  c o e f f i c i e n t s  o f  t h e  unknown A~ must  v a n i s h ,  so t h a t  a n o n v a n i s h i n g  
solution of this system exist. Decreasing the order of the determinant, following some al- 
gebraic transformations we have the following dispersion relation for the wave number 

(C~K,/(0) ~" = V ((0) D (~), ( 2 .4  ) 

where V(~) ,  D(~) a r e  complex f u n c t i o n s ,  d e s c r i b i n g  t h e  e f f e c t s  o f  sound d i s p e r s i o n  and d i s -  
s i p a t i o n  in  t h e  s u s p e n s i o n  due to  t h e  p r o c e s s e s  o f  i n t e r p h a s e  f r i c t i o n  and i n t e r p h a s e  h e a t  
and mass exchange, respectively. In the absence of particles (m = 0) V(w) = D(~) = i, i.e., 
there are no dispersion and dissipation in a gas without particles. The functions V(w), D(~) 
depend on frequency, on the thermophysical phase parameters, and on the spectral composition 
of the mixture in terms of the functions written below: 

V(co) = t + mv~ V~ </~>, 

~ o = ( ~ - ~ )  , ~ = ~ t ~ - - ~ - F ( ~ ) , J 2 - ~ ,  

- -  bkvy 1 (bc lH 3 -- ~ t t l )  --  M1A 
D(o)) = 1 + m ~ ( v , -  t) "~ ~7~V(WT=--~ _ ~  5 , 

H~=<h~> ( / = t - - 3 ) ,  A = L H ~ + H 2 H  a ,  

~ , = ~ ; ~ ,  ~ = ~ ( ~ - ~ 7 ~ ) ,  s  ( 2 . 5 )  

tr 1 

Mt = m r b ~ ( ? t  - t + bkv ) ,  M= = mrB, L = 7~(?~ - t) k~[=, 

l o Rv  P~o 
l = - ~ y ,  b = - - ,  B = ( l - - k v b ) b ,  r = - f ~ - ,  

C~o B~o 92o 

Cl ----- Cpl t - -  C~ 

We note that the dispersion dependence of (2.4), (2.5) has been obtained for the case of low 
bulk content (~2 ~ I) and moderate pressures (r ~ I). In this case, however, the drop mass 
content can be quite high (m ~ i). Account of terms with ~2 and r leads to the appearance of 
factors of the form (I - =2) and (i - r) in the dispersion relation. 

In the special cases of single-component mixtures of vapor with drops (k V = i) and a 
gas with particles, in the absence of phase transformations (k V = 0, ~8 = ~) the dispersion 
dependence (2.4), (2.5) is in agreement with the dependencies of [13].- The dispersion rela- 
tion for a monodisperse vapor -gas -drop mixture [8] is obtained from (2.4), (2._5) with the 
substitution N0(a) = n06(a - a0), where 6 denotes the Dirac 6-function, while <hj> = hj(a 0, 

m) (j = i-3). 

3. Consider the special case of low drop mass content (m ~ i), when the effect of 
interphase mass exchange on acoustic wave propagation is most substantial [8-11]. Neglecting 
in (2.4), (2.5) terms of order higher than m, the order of smallness, a simpler relation is 
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obtained, describing the dispersion and dissipation effects in vapor-gas-drop media of the 
aerosol fog type: 

m [V o (~) + rD o (~)1, C1K,/~ = t § --5- (3 .  ! ) 

D o (~) = (y~ t)  H2 - -  bkv?~ (b~IH~ - -  2 1 g )  
- �9 

Here the functions V ~ Hj (j = i-3) have the same form as in (2.5). 

It must be stressed that according to (3.1) the contributions of the friction phases 
and of interphase heat and mass exchange to the disturbance dispersion and dissipation in 
the aerosols are additive. Unlike a gas with solid particles [13], however, the contribu- 
tion of interphase heat and mass exchange, determined by the function D~ is not propor- 
tional to the fractional masses of different size particles. Consequently, relation (3.1) 
cannot be obtained by simple integration of the corresponding dependencies for a monodisperse 
suspension in fractional masses, as in the case of a gas suspension without phase transfor- 
mations. In this connection we also note that a similar dispersion dependence for a vapor- 
drop aerosol [13], obtained by formal transition to the case of small m from the general 
dependence, does not describe a number of effects of interphase mass exchange, particularly 
the nonmonotonic character of sound damping in aerosols [14], the limiting transitions for 
m + 0 and ~ § =, and so on. The corresponding dependence for a vapor and drop mixture can 
be obtained from relation (3.1) for k V = I. 

We investigate the low-frequency asymptote of the complex wave number K, = K + iK**, 
following from the dispersion relation (3.1) for ~ + 0. To simplify the analysis we neglect 
the nonequilibrium interphase surfaces with mass exchange, and assume that R V ~ R G and x~ ~ DI. 

We further use the dimensionless parameters characterizing the thermophysical and 
acoustic properties of aerosol: 

Prl  = ~q%{) ' i"  K ,  == K,C1T~,  ~ = o~T~,, 

(a, is a representative radius). 

The corresponding low-frequency asymptote K* can be written in the form 

F , c,, 1 2 

l J  

3 -- - -  

where ai, j are mean radii, determined by the equation 

,!' II 
~ L a l I / i ~  2 ] L a l n i n  J f  

(3 .3 )  

and Ce i s  the  d imens ion less  e q u i l i b r i u m  sound v e l o c i t y  i n  a gas m i x t u r e  w i t h  a vapor and 
liquid drops [8]. At low drop mass content (m ~ i) we write down for (Ce)-~ 

C0) -~ = i + ~ ,,~ : + (~ - ~ ) ( v :  - ~ ) ~ j  ~- ~,,~,~ (v, - ~)(~ - ~ 0 ' / , % .  

We note that in the asymptote (3.2) the relation with the coefficient A2 is related to 
effects of interphase mass exchange. In this cae, due to the smallness of m (~i) for vapor 
concentrations k V > m the term with A 2 is dominant in the factor i/m. Thus, the attenuation 
of low-frequency disturbances in polydisperse vapor-gas-drop systems in a wide range of 
variation of vapor concentration (m < k V ~ i) is basically determined by phase transforma- 
tion effects. It must be stressed, however, that for low disturbance frequencies, with de- 
creasing drop mass content the m linear solutions may become inadequate [14]. For ordinary 
aerosols in the presence of phase transformations the linear analysis is effective when m 
10 .3 [14]. 
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According to (3.2), account of the effect of spectral composition on the propagation 
of low-frequency disturbances in polydisperse vapor-gas-drop mixtures with an arbitrary 
shape of the distribution function N0(a) reduces only to account of the integral character- 
istics as, I and as, 3. fin this case the mean radius as, ~ is related to interphase friction 
effects, and for k V ~ - to interphase heat exchange effects, while the radius a3, I is 
basically related to phase transformation effects. This fact must be taken into account 
in analyzing the characteristic times [i0] of interphase interaction effects of polydisperse 
suspensions with mass exchange. Since in the general case as, I ~ as,a, the propagation of 
low-frequency sound in systems of the type of polydisperse fog cannot be described within 
monodisperse models, unlike the case of suspensions without mass exchange. 

4. Several results on dissipation and dispersion of monochromatic waves in mixtures 
of air With vapor and water drops with a gas phase pressure Pl = 0.i MPa and vapor concen- 
tration k V = 0.i (T o = 327 K), obtained by means of the dispersion relations (2.4), (2.5), 
are illustrated in Figs. 1-4. 

The dispersion curves are shown in the form of attenuation coefficients o, K** and the 
phase velocity Cp as a function of the dimensionless frequency ~3,1 (~3,1 = ~v*, a, = a3,1). 
As a dimension-removing parameter we use the radius a3,1, which according to the asymptotic 
K, (3.2) is the characteristic mean radius of the polydisperse vapor-gas-drop mixture during 
low-frequency acoustic actions, which is usually quite close in value to that of a3,2, is also 
characteristic of propagation of high-frequency disturbances in polydisperse suspensions 
without mass exchange [13]. In this case, according to the HSlder inequality, the a3,1 is 
the minimum among the other characteristic mean sizes of the polydisperse suspension (a~, I 
a3, 2 ~ as,~). Therefore, the use of a, as dimension-removing parameter rather than others, 
such as as, s , leads to a shift in the dispersion curves along the abscissa axis q = log 
toward increasing q, since log~5,3 = log~,l + 21og(as,s/a~, I) (as,~/a3, I ~i). 

Further, to illustrate sound propagation in aerial fog we selected a uniform mass dis- 
tribution of drops, when N(a) = const a -3 = , ami n 3 p, ama x = 30 p, a s i = 40 p. The con- 
stant value in the function N(a) can be determined from the values of the bulk drop content 
in the mixture ~2 or the mass concentration m. According to (2.5), (3.3), however, the value 
of this constant does not affect the shape of the dispersion curves and the values of the 
mean radii ai, j. 

Figures 1-3 show the attenuation decrement per wave length o, the linear attenuation 
coefficient K...,, and the phase velocity Cp as a function of the frequency ~3 i for various 
drop mass contents m. The solid and dotted curves correspond to the cases o~ nonequilibrium 
(~ = 0.04) and frozen (~ = 0) mass exchange between the drops and the gas in the polydisperse 
fog. The dashedlines are used to illustrate the dispersion curves, corresponding to mono- 
disperse vapor-gas-drop mixtures with a drop radius a 0 = a3, I = I0 ~ in the presence of a 
nonequilibrium phase transformation. The digits on the curves indicate the value of the mass 
content of the suspended phase m. 

Analysis shows that for very small m (S0.OI) the shape of the dependence o(~3, I) of a 
polydisperse fog is basically determined by mass exchange effects, and practically coincides 
with the corresponding dependence for a monodisperse mixture [8]. With increasing m the 
contribution of interphase friction to the disturbance dissipation increases, and for m = 0.i 
the solid and dashed curves differ (Fig. i). This difference is most substantial at inter- 
mediate frequencies (~s,l ~ I), when the effect of a polydisperse composition of a suspen- 
sion on sound propagation is maximum and cannot be described within a monodisperse 
model with the use of effective sizes (Figs. 1-3). Therefore, neither of the mean 
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~ad~ ~.IB) ~r i!%:6j]r be used as a characteristic size in the given frequency region. We 
no~e Chat ~for ~uff$c:~e~t!Tyih~gh drop mass content (m ~ I) the attenuation decrement o for a 
~mQ~di~p!e~se~enQ~ol ~can ~b~gh ~b.g~nt%a!ly exceed and be substantially less than (~ for a 
polydi~:p~se:s~sipensiQn a~ ~di~fe~en~ fr~equ~ncies ~3,1- The effect of interphase mass exchange 
on w~ve ~01nagati~n Sn ~olyd~s~se :~ogs, as ~ell as for monodisperse suspensions [8], is 
most sharp1~empre%~fl ~n ~e~o~sols wi~ihsmall ~ (the solid and dotted curves of Figs. i-3). 
The role of multirate effeet~ in~crease~ and the difference between these curves decreases 
with increasing m. 

The substantial effect of phase transformations on the propagation of low-frequency 
disturbances in polydisperse aerosols with small m leads, as is the case for monodisperse 
suspensions [14], to the anomalous effect of nonmonotonic dependence of sound dissipation on 
the drop mass content m. This effect is unexpected, since according to the commonly accepted 
point of view the intensity of disturbance attenuation in these systems is proportional to 
the mass content of the disperse phase, which is the source and the fundamental reason for 

dissipation. 

Figure 4 illustrates the m-dependence of ~ for fixed dimensionless frequencies: i) 
~,~ = 0.01 (~ = I0 sec-~), 2) ~,~ = 0.i (~ = i00 sec-~). It is seen that the dependence 
o(m) is nonmonotonic, and has a local maximum when m ~ ~,i. For a monodisperse fog, how- 
ever, the maximum of o at frequency ~s,i = 0.i is more sharply expressed (dashed curve). It 
is noted that for m ~ i the intensity of attenuation in a suspension with phase transforma- 
tions substantially exceeds the attenuation in a gas with particles, where these transforma- 
tions are absent (dotted curves). With increasing m the effect of interphase mass exchange 
on disturbance attenuation with the frequencies considered drops (the solid an~d dotted curves 
practically coincide for m ~ I). In this case the disturbance attenuation in polydisperse 
gas suspensions with high drop mass content (m ~ i0) can substantially exceed (by 3 times) 
the wave dissipation in monodisperse systems (the solid and dotted cur~ 2). 

The authors are grateful to S. A. Yakubov for performing t~e ~merical calcul~ions. 
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EFFECT OF THE MOTION INSIDE A LIQUID DROP ON ITS RISE IN 

A VERTICAL TUBE 

P. K. Volkov UDC 532.529.6 

I. Introduction. In treating the rise of bubbles in a liquid it is usually assumed 
that the medium inside the bubble is at rest and the state of the medium can be described 
by a single constant: the thermodynamic pressure pg of the gas inside the bubble. For gas 
or air bubbles rising in a heavy liquid this assumption is justified, since the ratios of 
the densities and viscosities of the gas and liquid are small and so the medium inside the 
bubble is light and the friction of the gas against the liquid on the surface of the bubble 
is small and has a negligible effect on the motion. This assumption is supported by numerous 
experiments. However for vapor bubbles, such as in Freon, the ratio of the densities is of 
order 0.i and the use of the bubble model can lead to inaccurate results. 

2" Statement of the Problem and Solution Algorithm. We assume that the medium inside 
the bubble is a viscous incompressible liquid (a liquid drop moving in a different liquid) 
with Pl/P2 = 0.i. We consider hindered motion of the liquid drop in a tube with I = 0.8. 
Here Pl and p= are the densities of the media inside and outside the liquid drop; I = a/Rk, 
where a is the radius of a sphere whose volume is equal to that of the liquid drop and R k is 
the radius of the tube. Since the liquid drop occupies more than half of the tube cross sec- 
tion, the flow of the liquids inside and outside the drop are determined by the nature of the 
flow through the narrow gap between the wall of the tube and the surface of the drop. For 
small I the effect of the tube wall is small, as is shown by calculations of rising bubbles 
[I], but its effect increases with I. 

The motion inside and outside the liquid drop is described by the Navier-Stokes equa- 
tions. Consistency conditions must be satisfied on the interface F between the two liquids 
[2]. The velocities and the tangential components of the stress must be equal across the 
interface, while the normal component of the stress has a jump equal to the magnitude of the 
capillary pressure. The algorithm for obtaining the numerical solution of the problem is 
constructed in analogy to [i] and has been described in detail in [3]. The results of a 
series of calculations are sunmnarized in Fig. 1 in terms of the coordinates R o = a/(v~/g) I/~, 
R v = a/(o/p2g) I/2. A given external medium corresponds to a straight line on the diagram, 
since Ro/R v = (gp~v/~o3) I/6 = M I/6, where M depends only on the physical constants of the 
external medium (g is the acceleration of gravity, o is the surface tension on the interface 
between the media, and v I and v 2 are the kinematic viscosities of the liquid drop and the 
external liquid). Because of the large number of dimensionless parameters [3] (we use the 
Reynolds numbers of the internal and external fluids Re I = u2a/v I, Re 2 = u2a/v2 and the Weber 
number We = p2u22a/o) it is difficult to generalize the results. Nevertheless the lines of 
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